## Saturday, September 21, 2013

### 3D Analogue to the Trapezoid (part 3)

Suppose we have two parallel polygonal faces with a non-zero distance between such that, for some pairing of vertices, every consecutive pair of edges connecting the paired vertices are coplanar. It follows that the faces joining the two given parallel polygonal faces are quadrilaterals.  At first, it might not appear that this is a sufficient condition to assert that the shape thus described is a frustum of a slanted pyramid.  In this post I proceed to prove that it is.  For the volume formula of a frustum of a pyramid (slanted or otherwise), see this previous post of mine.

I term the parallel polygonal faces the end faces and the other faces as the side faces.

Proposition 1 (Transitivity of Parallel Lines).
1. Let P be a plane and L a line parallel with P. Every line parallel with L is also parallel with P.
2. Let L, M, N be lines. Then, if L is parallel with M and M with N, then L is parallel with N.
Proposition 2. The corresponding edges of the polygons are parallel with each other.
 Fig. 1. Partial drawing of  two parallel planes.  AC is the "bottom edge" and BD is the "top edge".  AB and CD are "side edges".  Consecutive side edges are coplanar with each other.
Proof: Assume without limitation that the faces are parallel with the horizontal plane. Since the faces are parallel, the edges do not change in proximity vertically. Consider any two consecutive edges AB and CD joining the two end faces with corresponding vertices A with B and C with D. Draw line EF with E on line AC (edge of bottom face) and F on BD (edge of top face; extend BD as necessary) such that EF is perpendicular to AC. EF is coincident with the plane of quadrilateral ABDC and so is coplanar with all of its edges.
 Fig. 2. We show the construction of B'D' as a line which is coincident with BD, but this is not given as a condition in the construction. That is to be proved. At construction we take neither parallelness nor coincidence with BD for granted. Because it is the same distance from AC as the point F, however, we do know there is at least an intersection between B'D' and BD at F.

Let B' and D' be points such that AB' and CD' are of length(EF), coincident with the plane of quadrilateral ABDC, and perpendicular to AC. Then AB' and CD' are parallel.

If you want to go crazy with the details to see that B'D' is parallel with AC, see the parenthetical section below. I obviously did want to go crazy. Normal people can skip ahead.

(By side-angle-side, triangle AB'C is congruent with triangle CD'A. Thus,
Also, since the non-right angles of a right triangle sum to 90°,

Thus, triangles B'AD' and D'CB' are congruent by side-angle-side. Hence,
By alternating interior angles,
Since the angles of a triangle sum to 180°,
Hence, angle B'D'C is a right angle.  By a similar argument, angle D'B'A is a right angle and so quadrilateral AB'D'C is a rectangle and thus B'D' is parallel with AC. Since F is length(EF) away from AC, in the same plane as quadrilateral AB'D'C, on the same side of AC, it is on line B'D'.)

 Fig. 3. The shape we are discussing doesn't really look like this, but how do we know it doesn't look like this? How do we know Fig. 2. isn't the one that's wrong? See rest of argument below.
Assume that lines BD and B'D' are not coincident. Both are coincident with a common plane and so are coplanar. Since quadrilateral ABDC is on an angle from horizontal and BD and B'D' are not coincident, there is some point, P, on B'D' which is below BD. But point F is coincident with both BD and B'D'. Since BD is parallel with horizontal (it is part of a polygonal face which is horizontal), and B'D' has at a point on and a point below BD (points F and P, respectively), B'D' is not parallel with the horizontal plane. But, since AC is parallel with the horizontal plane, the parallel line B'D' must be parallel with the horizontal plane (Proposition 1), which is a contradiction. Thus our (limiting) assumption is wrong and lines BD and B'D' are coincident. It follows that BD is parallel with AC.■

Corollary 1. The walls of the prism are trapezoidal.

Proof: The corresponding edges of the end faces are parallel.■

Corollary 2. Every cross-section of the prism, parallel with the end faces, has corresponding edges parallel with the end faces.

Proof: Fix any cross-section parallel with the end faces and observe that the side edges are intersected by this cross-section so as to produce a polygonal face, whose vertices and edges correspond with the bottom face in the same way the top face did in the proof of Proposition 2. The same argument, therefore, applies.■

Proposition 3. The top and bottom faces are similar shapes.

Proof: It suffices to show that the interior angles at each pair of corresponding vertices are equal. Let A, B, and C be consecutive vertices of the bottom polygon and D, E, and F be the corresponding vertices of the top polygon, respectively. By Proposition 2, DE is parallel with AB and EF is parallel with BC. There exists vertices D’, E’, and F’ which are translated vertically from the top polygonal face down to the plane of the bottom polygon. By this we obtain lines D’E’ and E’F’, in the plane of the bottom polygon which are parallel with DE and EF, respectively. By Proposition 1, D’E’ is parallel with AB and E’F’ is parallel with BC. Draw a line through B and E’ to some point beyond E’, say, G (see Figure 1).

Figure 1. AB || D’E’ and BC || E’F’.

Then we have corresponding angles ABE' = D'E'G and CBE' = F'E'G. Thus, ABC = D'E'F'. We take for granted that the translation of DEF to D’E’F’ did not alter the angle between the lines and so we have our result.■

Corollary 3. The cross-section taken parallel with the end faces is everywhere similar to the ends.

Proof: By observing that the parallel cross-section intersects the trapezoidal walls of the prism so as to produce lines which are parallel to the base and top (Corollary 2), the argument applied for Proposition 3 applies here as well.■

Proposition 4.  The lines extended from the side edges intersect at a common point (the apex).

Proof:  Consider three consecutive vertices on the base A, B, and C, and corresponding vertices D, E, and F on an arbitrary parallel cutting plane parallel with ABC. By corollary 3,
Since AD and BE are coplanar, they intersect at some point P. Similarly, BE and CF intersect at some point Q. Assume that P ≠ Q. Take a section parallel to the base through P and label the vertices of the section which correspond to A, B, and C as D, E, and F and observe that the above proportion equation still follows from corollary 3. Also, D = E = P and so line segment DE = 0. However, since P ≠ Q, line segment EF ≠ 0, which contradicts the proportion above. Therefore, our assumption that P ≠ Q is wrong and we have P = Q. By the principle of mathematical induction, the proposition follows.  [Finding P is (i) 2 in S and establishing P = Q is (ii) the inductive step. 1 in S is either automatic or ill-defined I suppose, but irrelevant anyway.]■

The shape we have considered in this post is a frustum of a (possibly slanted) pyramid by proposition 4.

We conclude by noting that the argument for determining the volume of the frustum of a pyramid does not impose a condition that requires the top face to be centered over the bottom face. A slant does not alter the argument and therefore the result is the same. Note, of course, that the height must be measured perpendicularly to the end faces. It should be noted that we have not dealt in this post with the relationship between the cross-sectional area and the height, which relationship is needed in order to establish the volume formula.

Such proof involves 1) similar triangles, using the height of the apex as a reference, and 2) the relationship between linear dimensions and the area(s) they pertain to. Assurance of the existence of a proper apex is the critical component addressed in this post.

Thanks to one of my readers for the question at the end of a previous post that led to this post.

## Friday, September 13, 2013

### Find Snap Tangent Points

A common feature of CAD programs is support for tangent object snaps.  A line is drawn from some point, A, toward a circle with center C and radius r.  We want to find a point (or points), B, on the circle, such that AB is tangent to the circle.

Here's a sketch of the problem:

We are given the points A and C and the radius r.  The goal is to find B1 and B2.  We argue mainly for B1. The argument for B2 is the same.  We have assumed A is outside of the circle or else there are no solutions. (If you write code for this, you will need to check for this condition.)

Since AB1 is tangent to the circle and B1C is the radius of the circle, angle AB1C is a right angle.  The distances f and from A to C, say, d, may be calculated using the pythagorean theorem.  Now, we draw the altitude of triangle AB1C to E.  By similar triangles (ΔAB1C ~ ΔB1EC~ ΔAEB1) we determine that

and

and so, e = r2/d and a = f r/d.  We let δ be the normalized direction vector from C to A, namely,

Then point E is given by E = C + e δ.  Let δp= (δy, –δx), or the clockwise 90° rotation of δ.  Then points B1 and B2 are given by:

B1 = E + a δp
and
B2 = E – a δp,

which are the desired points.

## Thursday, September 12, 2013

### How Do You Write a Program Install Script in Windows 7?

Sometimes when you ask a simple question, you don't get a simple answer.  (I understand, however, if you ask a stupid question, the expected concord tends to occur.)  And you start to believe it's because there isn't an easy answer.  I wanted to know how to request admin rights in an install script running on Windows 7 so that a user could approve the request for admin privilege to install a program.  (I'm only dealing with the situation where the user has admin privilege to pass on to my program.)

Lots of people have had this question and answers abound.  Generally, I find that there are at least three categories of responses to questions that are a little off the beaten path:
1. You can't/shouldn't do that! (Meaning, I think, sometimes, that they envy the questioner for thinking to ask the question and don't want a good answer to exist:  "That's stupid, so there!")
2. Here's an awesome (or complicated) strategy for doing it!
3. Um, I don't know if this is exactly what you want, but it might do what you need.  Depending on your situation, maybe it's good enough?
Regarding my latest problem, people say, "That would be a major security issue!" (Not so.  An install script is only logical where the requirement is that the user trusts the script.  Otherwise, why exactly is the user installing the program? Um, duh?)  Plenty of category 1) out there.  And in the same online forums, there are a few category 2) responses out there.  And "hats off" to them.  But I'm here to give you a category 3) response.

Create two files.  The first one is just a stub that requests the admin privileges for the second script.  The second script does all of the work.  Here is the first script:

Call the script (containing the above code) setup.js or some other suitable name.  Now, you go decide what your second script needs to do—the one named subsetup.js (or whatever you decide to call it).

A caveat needs to be mentioned—although the above scheme worked on my home machine, on another computer the "runas" operation did not trigger an administrator privilege request.  It could be related to policy restrictions.

## Friday, September 6, 2013

### Snap Perpendicular Code

"Snap perpendicular" is a way certain drawing programs (like AutoCAD and DraftSight) help the user to draw a line starting from some point C and draw it up to an existing line such that the new line is perpendicular to the existing one.  What would we do without "snap perpendicular"?  The alternative, I suppose, would be to hold a set-square on the computer screen.  Or, calculate the destination point.  Of course, the aforesaid programs do just that.  And so does the Maxima code at the end of this post.

Derivation

We're given an existing line segment AB in space and a point C.  We want to find a point P on line AB such that line segment CP is perpendicular to AB.  (We won't worry about whether it is on the line segment AB, just on the line AB; we omit a "range check".)  We observe that the perpendicular distance between a point and a line is the shortest possible distance and so we will treat this as a minimization problem, using the methods of calculus.  Let A = (Ax, Ay, Az) and similar for points B and C.  Then line AB is described by the parametric equations:

x(t) = Ax + (Bx – Ax) t,
y(t) = Ay + (By – Ay) t,
z(t) = Az + (Bz – Az) t,

where P(t) = (x(t), y(t), z(t)).  We want to find P(t) such that line segment CP(t) is as small as possible, which is equivalent to finding when the square of the distance is minimized.  So, we define

D(t) = (C– x(t))2 + (C– y(t))2 + (C– z(t))2
= (Cx – Ax – (Bx – Ax) t)2 + (Cy – Ay – (By – Ay) t)2 + (Cz – Az – (Bz – Az) t)2.

Taking the derivative yields:

D'(t) = 2 (Cx – Ax – (Bx – Ax) t) (– (Bx – Ax)) + 2 (Cy – Ay – (By – Ay) t) (– (By – Ay)) +2 (Cz – Az – (Bz – Az) t) (– (Bz – Az))

We solve for t when D'(t) = 0 as follows:

0 = (Cx – Ax – (Bx – Ax) t) (Bx – Ax) + (Cy – Ay – (By – Ay) t) (By – Ay) + (Cz – Az – (Bz – Az) t) (Bz – Az)

[(Bx – Ax)2 + (By – Ay)2 +  (Bz – Az)2] t = (Cx – Ax)(Bx – Ax) + (Cy – Ay)(By – Ay) +  (Cz – Az)(Bz – Az)

t = [(Cx – Ax)(Bx – Ax) + (Cy – Ay)(By – Ay) +  (Cz – Az)(Bz – Az)]/[(Bx – Ax)2 + (By – Ay)2 +  (Bz – Az)2],
which can be stated more succinctly in vector notation as
$t = \frac{(B-A)\cdot (C-A)}{(B-A)\cdot (B-A)}$
from whence derives the below Maxima code:

To prove that the point thus obtained is indeed the desired "Snap Perpendicular" point, it would be sufficient to show that the dot product of the vectors (A – B) and (C – P) is equal to zero, which check I omit.